J. S. Dugdale and F. E. Simon

(iv) The thermal expansion

From the relationship (3) and from the compressibility the volume thermal expansion coefficient, α , can be derived. Table 6 shows the variation of the expansion coefficient with temperature at three different densities.

TABLE 6. THE THERMAL EXPANSION OF SOLID HELIUM; THE VOLUMEEXPANSION COEFFICIENT AS A FUNCTION OF TEMPERATURE

<i>T</i> (°K)	$\frac{10.6 \text{ ml.}}{10^4 \alpha}$	$\begin{array}{c} 12 \text{ ml.} \\ 10^4 \alpha \end{array}$	15 ml. $10^4 \alpha$
0	0	0	0
2			1.05
4	0.09	0.48	10.2
8	0.93	4.9	
12	3.4	14.6	
16	7.3		. <u> </u>
20	12.6		

(v) The internal energy at 0° K and the lattice energy

By integrating the p, V relationship at 0°K the internal energy at absolute zero, U_0 , can be obtained as a function of volume. In this calculation, the value of U_0 at 25 atm pressure is taken as -11.9 cal/mole (Simon & Swenson 1950;

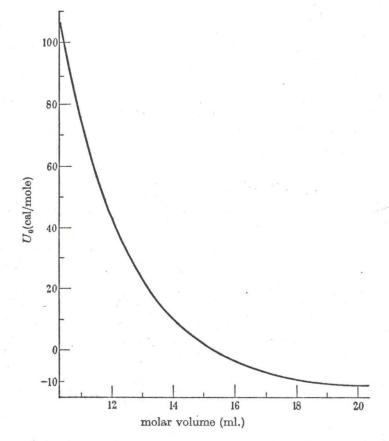


FIGURE 11. The internal energy of solid helium at 0°K as a function of volume.

304